Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks

نویسندگان

  • Stefan Klampfl
  • Wolfgang Maass
چکیده

It is open how neurons in the brain are able to learn without supervision to discriminate between spatio-temporal firing patterns of presynaptic neurons. We show that a known unsupervised learning algorithm, Slow Feature Analysis (SFA), is able to acquire the classification capability of Fisher’s Linear Discriminant (FLD), a powerful algorithm for supervised learning, if temporally adjacent samples are likely to be from the same class. We also demonstrate that it enables linear readout neurons of cortical microcircuits to learn the detection of repeating firing patterns within a stream of spike trains with the same firing statistics, as well as discrimination of spoken digits, in an unsupervised manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks

Artificial neural networks are learning paradigms which mimic the biological neu­ ral system. The temporal coding Spiking Neural Network, a relatively new artifi­ cial neural network paradigm, is considered to be computationally more powerful than the conventional neural network. Research on the network of spiking neurons is an emerging field and has potential for wider investigation. This rese...

متن کامل

Supervised Learning with Spiking Neural Networks

In this paper we derive a supervised learning algorithm for a spiking neural network which encodes information in the timing of spike trains. This algorithm is similar to the classical error back propagation algorithm for sigmoidal neural network but the learning parameter is adaptively changed. The algorithm is applied to the complex nonlinear classification problem and the results show that t...

متن کامل

Receptive field optimisation and supervision of a fuzzy spiking neural network

This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural netw...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009